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Massive content composed of both natural scene and screen content has been generated with the in-
creasing use of wireless computing and cloud computing, which call for general image quality assess-
ment (IQA) measures working for both natural scene images (NSIs) and screen content images (SCIs). In
this paper, we develop a saliency-induced reduced-reference (SIRR) IQA measure for both NSIs and SCIs.
Image quality and visual saliency are two widely studied and closely related research topics. Tradition-
ally, visual saliency is often used as a weighting map in the final pooling stage of IQA. Instead, we detect
visual saliency as a quality feature since different types and levels of degradation can strongly influence
saliency detection. Image quality is described by the similarity between two images’ saliency maps. In
SIRR, saliency is detected through a binary image descriptor called “image signature”, which significantly
reduces the reference data. We perform extensive experiments on five large-scale NSI quality assessment
databases including LIVE, TID2008, CSIQ, LIVEMD, CID2013, as well as two recently constructed SCI QA
databases, i.e., SIQAD and QACS. Experimental results show that SIRR is comparable to state-of-the-art
full-reference and reduced-reference IQA measures in NSIs, and it can outperform most competitors in
SCIs. The most important is that SIRR is a cross-content-type measure, which works efficiently for both

NSIs and SCIs. The MATLAB source code of SIRR will be publicly available with this paper.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

The quick advancements of transmission technologies have
boosted various remote applications such as telecommuting and
cloud computing, which bring massive computer-generated con-
tent called “screen content”. The so-called screen content has some
distinctive characteristics different from natural scene because of
the contained computer generated content, e.g., texts, icons, tables,
graphics, etc. Those distinctive characteristics which sometimes vi-
olate natural scene statistics (NSS) cause some failures in tradi-
tional natural scene image (NSI) based applications. Hence some
specialized technologies for screen content image (SCI) have been
proposed, such as screen content video compression [1].

The booming of screen content also calls for SCI-specific im-
age quality measures. Limited work has been done concerning SCI
quality assessment (QA). In [2], the authors constructed a screen
image quality assessment database (SIQAD), which shows that

* Corresponding authors.
E-mail addresses: minxiongkuo@sjtu.edu.cn (X. Min), guke@bjut.edu.cn (K.
Gu), zhaiguangtao@sjtu.edu.cn (G. Zhai), humenghan@sjtu.edu.cn (M. Hu),
xkyang@sjtu.edu.cn (X. Yang).

https://doi.org/10.1016/j.sigpro.2017.10.025
0165-1684/© 2017 Elsevier B.V. All rights reserved.

state-of-the-art image quality assessment (IQA) measures do not
work efficiently for SCIs. It is reasonable since current IQA mea-
sures are implicitly designed for NSIs and somehow rely on NSS.
Wang et al. [3] also constructed a database called quality assess-
ment of compressed SCI (QACS). In [4], the authors proposed a
full-reference (FR) saliency-guided quality measure named SQMS
for SCI. SQMS exploits gradient magnitude similarity as the quality
map, which is then weighted by a specific saliency map. Gu et al.
[5,6] learned blind quality evaluation engines for SCI from a huge
group of SCIs and corresponding objective quality scores calculated
by FR measures.

Although dozens of NSI quality estimators [7-16] and several
limited SCI quality measures [2-6] are proposed, they are either
implicitly designed for NSIs or specifically developed for SCls. Only
very few quality measures can work for NSIs and SCIs simultane-
ously. Min et al. [17] proposed a blind blockiness measure which
works for JPEG compressed NSIs and SCIs. Xu et al. [18] developed
a measure for NSIs and SCIs. In [19], Min et al. constructed a cross-
content-type database, and proposed a unified content-type adap-
tive blind IQA measure for compressed natural, graphic and screen
content images. In practical multimedia communication systems,
we may encounter both types of images, and sometimes we do not
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Fig. 1. Influence of quality degradation on image saliency. First row: the reference and degraded images. Second row: corresponding saliency detected by the image signature

model.

have any prior knowledge about the image types. Efficient general
quality measures ignoring image types are highly needed in such
circumstances. In this paper, we extract quality features efficient
for both types of images and develop a general reduced-reference
(RR) quality measure without any explicit image type classification.

The proposed method is based on visual saliency detection. Vi-
sual saliency detection is an important research topic in areas of
psychology, image processing and computer vision [20]. Visual at-
tention and quality assessment are two closely related research
topics [7,9,10,12,13,21-23]. Quality degradation can influence visual
attention [21]. Contrarily, visually salient positions should be more
carefully processed since subjects judge the image quality accord-
ing to the observations of some limited positions, and a typical use
of visual attention model is to optimize resource allocation and im-
prove the perceptual quality under the constraints of bandwidth
[24-28].

Motivated by the interaction between visual attention and
quality assessment, some researchers used visual attention map
as a weighting map during the quality pooling stage of IQA
[9,10,13,22,23]. Min et al. [13] collected some visual attention data
for main-stream IQA databases. Zhang et al. [22,23] studied the use
of saliency model in objective quality assessment models. Liu et al.
[9] used the saliency map to highlight the visually salient areas.
Besides highlighting the salient regions, Saha and Wu [10] used the
dissimilarity between saliency maps of the reference and distorted
images to highlight the more distorted image content. Besides vi-
sual attention maps, some measures utilize other kinds of weight-
ing maps such as phase congruency map [7] and gradient magni-
tude map [12]. Although without explicit visual attention predic-
tion or visual saliency detection processes, such kinds of weight-
ing maps have also highlighted the visually salient positions, which
can be also deemed as one kind of visual saliency.

Instead of as a weighting map, visual saliency can be also used
as a quality feature since quality degradation can strongly affect
saliency detection. Zhang et al. [8] proposed a FR IQA method
named VSI by measuring the similarity between the reference im-
age’s and the distorted image’s visual saliency. VSI is a FR measure
since it utilizes not only saliency, but also the gradient magnitude
and chrominance. All extracted feature maps have the same resolu-
tion as the reference image. Actually, deriving a gray scale saliency
map from a color image is an operation of dimension reduc-
tion, which motivates us to develop a saliency-induced reduced-
reference (SIRR) IQA measure.

SIRR detects saliency map of the reference image as the ref-
erence data, and then measure the similarity between the refer-
ence and distorted images’ saliency maps. We try to reduce the
reference data from two aspects. First, we down-sample the refer-
ence image to a coarser scale to detect saliency, whose resolution
is only one over sixty-four of the original resolution. We take full
advantage of such down-sampling operation to reduce the refer-

ence data. Second, we exploit a binary image descriptor called “im-
age signature” [29] to detect image saliency. The image saliency is
represented by the binary image signature, which also significantly
reduces the reference data. The final quality is described by the
similarity between two images’ saliency maps. In this work, the
similarity is evaluated by the classical image fidelity measure SSIM
[30].

We perform extensive experiments to test the proposed SIRR
in both NSIs and SCIs. Five large-scale NSI QA databases and
two recent SCI QA databases are used. Among the NSI databases,
LIVE [31], TID2008 [32] and CSIQ [33] are general-purpose IQA
databases, whereas LIVEMD [34] focuses on multiply distorted im-
ages and CID2013 [35] consists of contrast changed images. As
it to the SCI databases, SIQAD [2] is a general-purpose one and
QACS [3] concentrates on compressed SCIs. The all seven databases
can give an overall description of both NSIs and SCIs. As will be
presented in the experiments part, the proposed SIRR is efficient
for both types of images. SIRR can be comparable to or outper-
form state-of-the-art FR and RR IQA measures on all seven IQA
databases.

The remainder of this paper is organized as follows.
Section 2 describes the proposed saliency-induced reduced-
reference quality measure. Experimental results are given in
Section 3. We compare the proposed method with state-of-the-art
FR and RR quality measures in this section. Section 4 concludes
this paper.

2. Saliency-induced reduced-reference quality measure

As described in Section 1, visual saliency has been widely used
in IQA, but it is generally used as a weighting map during the
final pooling. Few work has considered saliency as a quality fea-
ture. Most bottom-up saliency models highly rely on the low-level
features, which are sensitive to quality degradation. Fig. 1 illus-
trates the influence of quality degradation on image saliency. From
this figure, we can observe that perceptible quality degradation
can cause perceptible change of image low-level features, thus lead
to the change of detected image saliency. Moreover, heavier qual-
ity degradation causes larger saliency change. So we can quantify
such saliency change to predict the quality. Zhang et al. [8] pro-
posed VSI based on such phenomena. But VSI is a FR measure since
it utilizes not only saliency, but also the gradient magnitude and
chrominance information. Motivated by the fact that saliency de-
tection operation is a process of dimension or data reduction, we
detect saliency as the reduced-reference information, and propose
a saliency-induced reduced-reference quality measure. Fig. 2 illus-
trates the framework of SIRR. The same feature extraction process
is executed for both the reference and the distorted images. Qual-
ity of the target image is then estimated by the similarity between
two images’ saliency maps, which are described through a binary
image descriptor named image signature. The entropy and mean
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Fig. 2. Framework of the proposed SIRR measure. Image signature are detected to represent saliency. Quality is described by the similarity between two images’ saliency

maps. Entropy and mean luminance are extracted for quality refining.

luminance of both images are also extracted for quality refining.
The details are as follows.

2.1. Saliency detection: image signature

SIRR evaluates image quality by measuring the saliency change.
In this work, we exploit image signature [29] to detect saliency.
Given an image X, we first down-sample it to a coarser scale

X (i, j) = axx(ri, rj),

(1)
where X’ is the down-sampled image, r is the down-sampling rate
which is set as 8 in this work, a is a low-passing filter and * is
the convolution operator, i=1,..., L%J and j=1,..., L];J are row
and column indexes, I, | represent the total number of rows and
columns of image X, | -] is the floor operation.

Then we compute the two-dimensional discrete cosine trans-
form (DCT) of the down-sampled image X/, and calculate the sign
of all DCT components and discard the amplitude information
across the entire frequency spectrum

% = sgn(DCT(X))), (2)

where X the image signature of image X/, and sgn is the sign func-
tion described by

-1 ifx<0

Sg“(")z{l ifx>0 (3)

Note that the image signature X is a binary map whose resolution
is approximate one over sixty-four of the resolution of the orig-
inal image x. As demonstrated in [29], image signature contains
some important information related to the foreground of an im-
age. The image signature of the reference image acts as the ref-
erence data, which is transmitted to the receiver side through the
ancillary channel.

In the receiver side, we first transform image signature X in-
versely back into the spatial domain

% = IDCT(R), (4)

where IDCT(-) computes the inverse discrete cosine transform
(IDCT). Then a saliency map m can be derived as squared inverse
image

m=XoX, (5)
where o denotes the Hadamard product. If m is further smoothed
by a gaussian kernel and interpolated to the original resolution,
it can act as a saliency map used to predict human fixations
[29]. Here we use m directly to avoid loss of information during
smoothing and interpolation.

2.2. Similarity between two saliency maps

In the receiver side, we perform the same image signature-
based saliency detection for the distorted image. The saliency maps
of the reference and distorted images are denoted as m; and mg,
respectively. Fig. 3 illustrates some examples of m, and m,. Note
that the saliency maps here are slightly different from the tradi-
tional saliency maps used to predict human fixations. m, and my
need to be further smoothed and interpolated to be used to pre-
dict fixations. The following work is then to measure the similarity
between m, and my.

During recent years, dozens of FR IQA measures have been pro-
posed [36]. Most of those FR IQA methods are image fidelity mea-
sures, which evaluate the fidelity or similarity between two im-
ages. In this work, we choose the classical image fidelity measure
SSIM [30], and we find that SSIM is also efficient for measuring the
similarity between saliency maps. Thus we evaluate the quality by
measuring the SSIM between m; and my

SSIM(m,, my)
Cprpg +c1) 20y +c2)

= , 6
(MZ + p2+c1) (07 + 02+ ) ®)

q

where cq, ¢, are two stabilizing constants, g, g, 0+, 64 and oy
represent the corresponding saliency maps’ local mean, variance
and covariance, which can be described as

”’r(ia ]) :Za(k’l)mr(i—’_k’j'i_l)ﬁ (7)
k1l
o:(i, j) = [y alk Dm(i+k j+1) - pr(Q DI, (8)
k.l
0, ) =) alk, DIm(i+k, j+1) — (i, I 9)

“ (Mg i+ k. j+1) = pai, ],
where a(k, I) indicates a local Gaussian window. Although SIRR
adopts SSIM as the similarity function, it can be replaced by other
similarity functions. We will give some analyses in Section 3.

In Eq. (6), q is the spatial quality map, which has the same res-
olution as the down-sampled image x'. Finally, the overall quality
of the degraded image can be derived through average pooling

1 .
Q=Z%:Q(LJ), (10)

where Z is a normalization factor.
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respectively. Four types of distortions are illustrated.

2.3. Quality refining: contrast change

The method described in Sections 2.1 and 2.2 works fine in
most situations since most types of distortions can cause saliency
change. But it is not so efficient in some unusual circumstances.
As illustrated in Fig. 3, saliency is not quite sensitive to contrast
change, whereas contrast change has a great influence on subjec-
tive image quality [37]. Thus we need to do some specific refining
for the contrast changed images.

Since the entropy and the luminance of an image are two im-
portant features which are sensitive to contrast change, we extract
the entropy difference Dy and the luminance difference D; for the
refining

Dy = H, — Hy, (11)

D =L —Ly (12)

where H;, Hy and Ly, L; are the entropy and mean luminance of
the reference and distorted images, respectively, and H, L can be
defined as

H=- pilog(p). (13)

- %Zx(i, i) (14)
ij

where p=[pq,...,Di,..., D25¢] denotes the histogram probability
of the luminance of the down-sampled image, and Z is a normal-
ization factor. H; and L, are also transmitted as RR features.

The refining is done by modifying the quality map q directly

q = qff, (15)

where " indicates element-wise power, and f is a contrast change
sensmve factor defined as

f_{k1|DH| +ka|De| if Q> 7. Dyl > 72
1

otherwise (16)

where Dy, Dy, Q are defined in Eqs. (11), (12) and (10), respectively,
kq, ko are two linear coefficients, tq, 7, are two thresholds used

to filter out the contrast changed images, ki, k;, 71, T, are con-
stants and empirically set. We will test SIRR’s sensitivity to these
parameters in Section 3. The modifying factor f acts as a punish-
ment on those contrast changed images whose entropy and mean
luminance are far deviated from the reference image. After modi-
fication, the final quality index of the image can be derived as

1
/ r(: 3
Q =7i2j:q(l,1). (17)
Some examples of q’ are shown in Fig. 3.
3. Validation of SIRR

The proposed SIRR measure is validated on both NSIs and SCIs.
The details are as follows.

3.1. Experimental settings

3.1.1. Test databases
As described in Section 1, the following two categories of IQA
databases are chosen as test beds:

o NSI QA databases: LIVE [31], TID2008 [32], CSIQ [33] which are
general-purpose IQA databases, together with a multiply dis-
torted IQA database LIVEMD [34] and a contrast changed IQA
database CID2013 [35]. The included images depict various nat-
ural scenes including indoor and outdoor views, humans and
animals, etc. All five databases are frequently used in different
IQA studies.

e SCI QA databases: A general-purpose SCI QA database SIQAD
[2] and a compressed SCI QA database QACS [3]. Both databases
include SCIs which cover a variety of computer operation
scenes, e.g., web pages, documents, user interfaces, etc.

Table 1 gives an overview of all test databases. Fig. 4 illustrates
some example NSIs and SCIs from two representative databases.

3.1.2. Comparing algorithms

We compare the proposed SIRR with state-of-the-art FR and RR
IQA algorithms. For FR measures, we consider the mainstream peak
signal-to-noise ratio (PSNR), SSIM [30], VSNR [38], MSSSIM [39],
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Fig. 4. Example NSIs and SCIs from two representative databases: LIVE (1st row) and SIQAD (2nd row).

Table 1
Overview of the test databases.
Content Name No. of No. of Distortion
type ref. dist. type
NSI LIVE [31] 29 779 General
TID2008 [32] 25 1700 General
CSIQ [33] 30 866 General
LIVEMD [34] 15 450 Multiple distortions
CID2013 [35] 15 400 Contrast change
Scl SIQAD [2] 20 980 General
QACS [3] 24 492 Compression

GSIM [40] and SQMS [4]. As it for RR measures, we compare SIRR
with RRED [41], FTQM [42], REDLOG [43] and RQMSH [44]. Among
all competitors, SQMS and RQMSH are two recent quality measures
specifically designed for SCIs. Whereas the other measures are im-
plicitly designed for NSIs.

For RRED, we choose RRED%“‘/ 16 a5 its score, which transmits
L/576 scalars as the reference data (L denotes the total number of
pixels in the image). Whereas for FTQM, we adopt the third score
( (ﬁise) of FTQM as the objective quality. 403 scalars act as ref-
erence data, which requires approximately 1/490 of the reference
information for a 512 x 384 image [42].

3.1.3. Evaluation criteria

We follow the suggestion given by the video quality experts
group (VQEG) [45]. The predicted objective scores are first nonlin-

Table 2

early mapped using a five-parameter logistic function

1 1
s) = == + Bas + Bs, 18
1= (3~ TrepBE—Fy) H P (18)
where 8; (i=1,2,...,5) are parameters obtained from a nonlinear

regression process, s and q(s) are predicted and mapped scores, re-
spectively. Then the following three evaluation criteria are applied
to assess the performance of all compared IQA algorithms.

e Spearman rank-order correlation coefficient (SRCC). It computes
the monotonicity while ignoring the relative distance between
the data

631 7

SRCC=1 - oo,

(19)
where d; denotes the difference between the ith image’s ranks
in subjective and objective evaluations, and N is the number of
images in the testing database.

Pearson linear correlation coefficient (PLCC), which measures
prediction linearity

2.i(qi—q)-(0;—0)
VEi@-9?- (0 -0)?
where o; and g; are the i-th image’s subjective rating and the

converted objective score after nonlinear mapping; o and q are
mean values of o; and g;.

L]

PLCC = (20)

Performance comparison on NSI and SCI QA databases. We highlight the best-performing model in each row.

Type Database Metric FR measures RR measures
PSNR SSIM VSNR MSSSIM GSIM SQMS RRED FTQM REDLOG RQMSH SIRR
NSI LIVE SRCC 0.8756 0.9104 0.9279 0.9513 0.9561 0.9363 0.9169 0.9454 0.9456 0.7534 0.9489
PLCC 0.8723 0.9042 0.9236 0.9489 0.9512 0.9301 0.9192 0.9426 0.9373 0.7562 0.9466
RMSE 13.360 11.669 10.476 8.6181 8.4323 10.034 11181 9.1218 9.5217 17.878 8.8078
TID2008 SRCC 0.5531 0.6251 0.7045 0.8542 0.8504 0.7307 0.7952 0.7745 0.6864 0.5452 0.8073
PLCC 0.5734 0.6413 0.6818 0.8451 0.8422 0.7596 0.7950 0.8063 0.6859 0.5479 0.8160
RMSE 1.0994 1.0297 0.9813 0.7173 0.7234 0.8727 0.8140 0.7937 0.9765 1.1226 0.7758
cslQ SRCC 0.8058 0.8369 0.8109 0.9133 0.9108 0.8643 0.8730 0.7762 0.8576 0.6462 0.9144
PLCC 0.8000 0.8154 0.8005 0.8880 0.8964 0.8466 0.8662 0.8804 0.8565 0.6170 0.9297
RMSE 0.1575 0.1520 0.1573 0.1207 0.1163 0.1397 0.1312 0.1245 0.1355 0.2066 0.0967
LIVEMD SRCC 0.6771 0.6459 0.7719 0.8363 0.8454 0.7565 0.8765 0.8553 0.8274 0.4116 0.8469
PLCC 0.7419 0.7343 0.8117 0.8747 0.8808 0.8200 0.9025 0.8777 0.8658 0.5115 0.8772
RMSE 12.681 12.839 11.045 9.1650 8.9562 10.825 8.1463 9.0628 9.4635 16.250 9.0796
CID2013 SRCC 0.6649 0.8132 0.4306 0.8580 0.8372 0.8048 0.7153 0.8232 0.5977 0.6797 0.8229
PLCC 0.6503 0.8125 0.4624 0.8686 0.8353 0.8215 0.7249 0.8316 0.5800 0.6997 0.8254
RMSE 0.4734 0.3633 0.5525 0.3088 0.3426 0.3553 0.4293 0.3461 0.5077 0.4452 0.3518
SCI SIQAD SRCC 0.5605 0.7566 0.5703 0.6112 0.5483 0.8803 0.4926 0.1801 0.7315 0.7534 0.7286
PLCC 0.5869 0.7561 0.5966 0.6195 0.5686 0.8872 0.4775 0.1388 0.7468 0.7555 0.7540
RMSE 11.590 9.3676 11.487 11.236 11.775 6.6039 12.577 11.176 9.5192 9.3784 9.4031
QACS SRCC 0.8656 0.8683 0.7172 0.8922 0.8947 0.9096 0.9190 0.7881 0.8262 0.7786 0.9227
PLCC 0.8679 0.8696 0.7050 0.8867 0.8921 0.9059 0.9166 0.7905 0.8217 0.7728 0.9214
RMSE 1.1019 1.0953 1.5733 1.0257 1.0025 0.9396 0.8871 1.3588 1.2642 1.4079 0.8623
Average SRCC 0.7147 0.7796 0.7048 0.8452 0.8347 0.8404 0.7984 0.7347 0.7818 0.7849 0.8560
PLCC 0.7275 0.7905 0.7117 0.8474 0.8381 0.8530 0.8003 0.7526 0.6526 0.6658 0.8672
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Table 3

Statistical significance matrix. Symbols ‘1°/‘0’ indicate that the row model is statically better/worse than the column model, respectively. Symbol ‘—’ indicates that the row
and column models are statically indistinguishable. Each seven symbols indicate the results on seven databases: LIVE, TID2008, CSIQ, LIVEMD, CID2013, SIQAD, and QACS,
respectively.

PSNR SSIM VSNR MSSSIM GSIM SQMS RRED FTQM REDLOG RQMSH SIRR
PSNR ~ ——————— 00-—00—  00-01-1 00000——  00000-0 0000000 0000010 0000011 0000-01 1-11-01 0000000
SSIM R - 0——0111 000001— 0000-10 0000-00 —000110 000011 000011 111111 0000--0
VSNR 11-10-0 1--1000  ——————— 00000-0  00000—0 —-00-000 1000010 0000010 0-00000 1111000 0000000
MSSSIM 11111 —— 111110— mM-1 e 1-—  111-100 1110110 —1——111 111-101 1111101 —~10-100
GSIM 111111 1111-01 111111 RN, 111-—0- 1110110 1M--11 111-101 1111101 ~10--00
SQMS mnm 1M1-11 —11-111 000-011 000-—1—  ——————u 100-11— 000——11 —1——111 mnm 000--10
RRED 1111101 —~111001 0111101 0001001 0001001 011-00—  ——————— 0--1011 01-1101 1111-01 000100—
FTQM 1111100 1111-00 1111101 -0--000  000--00  111--00 1--0100  ——————— ~11-10—-  111110— ——0--00
REDLOG  1111-10 11110-0 1-11111 000-010 000-010 —-0--000  10-0010 —00-01—  —————— 11110-1 000-0-0
RQMSH 0-00-10  00000-0 0000111 0000010 0000010 0000000 0000—10 000001— 1110-1 ——————— 00000—0
SIRR 1111111 1111—-1 1111111 ~01-011 —01—-11 111--01 111011 ——1-—11  111-1-1 1M1-1 e
Table 4
Reference data and computational cost comparison. The units of reference data are p: pixels; s: scalars; b: bits. Time: average running time for one image (tested on LIVE
database).
PSNR SSIM VSNR MSSSIM GSIM SQMS RRED FTQM REDLOG RQMSH SIRR
Type FR FR FR FR FR FR RR RR RR RR RR
Reference data Lp Lp Lp Lp Lp Lp ﬁ s 403 s 6s 1s 6%,Jrl(ib
Time (s/image) 0.0010 0.0741 0.3612 0.1297 0.0359 0.0583 0.9141 0.2084 0.6995 0.1105 0.0131
Table 5 Table 6
SRCC performance of using different saliency models and similarity functions. SRCC performance of different parameter settings.
Model LIVE TID2008  CSIQ LIVEMD (CID2013 SIQAD QACS ky 2 5 8 1 14
SIRRy¢ 0.8738 0.6018 0.8571 0.8311 0.8178 03144 0.7752 TID2008 0.7982 0.8117 0.8073 0.8159 0.8149
SIRRgpys 0.8525 0.5716 0.8256 0.8125  0.8175 0.0505 0.7560 csiQ 0.8840 0.9172 0.9144 0.9096 0.9019
SIRRsg 0.8433 0.6116 0.8728 0.5963 0.8261 0.0807 0.6914 CID2013 0.8239 0.8239 0.8229 0.8239 0.8239
SIRRppr 0.8393 0.6349 0.8312 0.7819 0.8192 0.0284 0.7472 SIQAD 0.7291 0.7310 0.7286 0.7259 0.7235
SIRR, 0.9418 0.8080 09181 0.8266 0.8246 0.5544 0.9217 ko 0.02 0.05 0.08 0.11 0.14
SIRR» 0.9500 0.8147 0.9168 0.8468 0.8248 0.7304 0.9224 TID2008 0.8158 0.8158 0.8073 0.8158 0.8158
SIRRg 0.9495 0.8192 0.9183 0.8439 0.8300 0.7167 0.9214 [&(0] 0.9166 0.9166 0.9144 0.9164 0.9164
SRR~ 09489 08073 09144 08469 08229 07286 09227 CIp2013 0.8239 0.8239 0.8229 0.8239 0.8239
SIQAD 0.7297 0.7295 0.7286 0.7271 0.7254
T 0.95 0.96 0.97 0.98 0.99
. . TID2008 0.8148 0.8156 0.8073 0.8167 0.7982
e Root-mean-square error (RMSE), which is an accuracy measure csiQ 0.9192 0.9192 0.9144 0.9097 0.8679
and calculates the difference between o; and g; CID2013 0.8239 0.8239 0.8229 0.8239 0.8239
SIQAD 0.6995 0.7244 0.7286 0.7262 0.6648
/1 T 0.1 0.3 0.5 0.7 0.9
— —(a: — 0:)2 2 . . . : .
RMSE = N (q' O') . (21) TID2008 0.8172 0.8175 0.8073 0.8167 0.8097
CSIQ 0.9256 0.9246 0.9144 0.9058 0.8884
32 E . I I CID2013 0.8236 0.8239 0.8229 0.8239 0.8239
2. Experimental results SIQAD 0.7249 0.7249 0.7286 0.7249 0.7258

Table 2 lists the performance comparison results on all seven
benchmark databases.

3.2.1. On NSI QA databases

The proposed SIRR generally outperforms FR measures like
PSNR, SSIM, VSNR and SQMS on all five NSI QA databases. It is also
comparable to the better measures like MSSSIM and GSIM, whose
performance is quite close to SIRR on a lot of NSI QA databases.
Whereas for the RR measures, SIRR generally performs better than
RRED, REDLOG, RQMSH, and the performance of SIRR and FTQM
is quite close. Note that SQMS and RQMSH are not comparable to
most competitors on NSI QA databases, since they are specifically
designed for SCIs.

3.2.2. On SCI QA databases

The superiority of the proposed method is more obvious in SCIs,
where most state-of-the-art IQA measures work not so well and
suffer from certain degrees of performance drop. On QACS, SIRR
performs better than all competitors. On SIQAD, SQMS shows the
best performance, which is expectable since SQMS is optimized on
this database. SIRR is close to SSIM, REDLOG, RQMSH, and they

outperform the rest measures. Note that we have not done any
particular optimization for SCIs, but SIRR still performs pretty well
on SIQAD and QACS. It indicates that the extracted features are ef-
ficient for both NSIs and SCIs. Table 2 also lists the average per-
formance of all seven databases. As shown, SIRR outperforms all
comparing algorithms from an average perspective.

3.2.3. Significance tests

To testify if the quality prediction abilities between any two
models are statistically different, we conduct a series of statisti-
cal significance tests. Following the strategy adopted in [46], we
exam the quality prediction ability by comparing the variances of
residuals between the nonlinear mapped scores g; and subjective
ratings o;. Lower variance indicates better performance. Thus we
conduct F-tests, whose test statistic is the ratio of two models’
residual variances. The null hypothesis is that the residuals of two
quality models are statistically indistinguishable (with 95% confi-
dence) and they are from the same distribution. We compare every
two models. Table 3 lists the significance test results on all seven
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Fig. 5. Scatter plots of all compared methods on LIVE (top three rows) and SIQAD (bottom three rows) database. The (black) lines are curves fitted with the five-parameter
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Fig. 6. Illustration of relative saliency and quality maps in SIRR. 1st, 2nd column: the reference, distorted images. 3rd, 4th column: saliency maps of the reference, distorted
images. 5th column: quality map. 1st row: NSI, Gaussian blur. 2nd row: NSI, white noise. 3rd row: SCI, JPEG. 4th row: SCI, JPEG2000.
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databases. From this table, we can get similar performance com-
parison results as described in the previous two paragraphs.

3.3. Reference data

The amount of reference data is also an important aspect of a
RR IQA measure. A better RR measure should be able to achieve
better performance using less reference data. For a gray-scale im-
age with a total of L pixels, FR measures need to transmit all L pix-
els, and each pixel generally costs 8 bits. RRED%‘G/]G is chosen as
the quality score of RRED. It needs to transmit L/576 scalars as the
reference data. FTQM’s reference data is composed of 403 scalars
since we adopt the third score (ﬁ;s - That means approximately
L/490 scalars for a 512 x 384 image [42]. REDLOG and RQMSH re-
quire 6 and 1 scalars as reference data, respectively. For the pro-
posed SIRR, the reference data consists of three parts: a L/64 bi-
nary image signature map, the mean luminance and entropy of the

reference image, which cost L/64 + 16 bits in total. RREDll\/gG/16 and

(ﬁgs . are selected such that the amount of reference data is close
to SIRR.

Table 4 gives an overview of all compared algorithms’ reference
data. Note that the authors’ implementations of RRED, FTQM, RED-
LOG and RQMSH adopt the double-precision data type for the ref-
erence scalars. It is the default data type for floating-point num-
bers in MATLAB, and it takes 64 bits for one scalar, which is quite
bit-costly. The reference data can be reduced by adopting some
other low-bit data types, but the models may suffer from some
performance drop because of the precision loss. SIRR does not have
such problems since the majority of reference data is binary. Con-
sidering the low rate of reference data and the competitive perfor-
mance, SIRR is quite promising.

3.4. Ablation experiment

3.4.1. Influence of the saliency model

SIRR adopts the image signature model [29] to detect saliency.
Other saliency models can act the same role. We replace the im-
age signature model with several other saliency models, includ-
ing Itti1998 [47], GBVS [48], SR [49], and PFT [50]. All other set-
tings are kept the same except for the saliency model. We denote
the corresponding RR measures as SIRRy;, SIRRggpys, SIRRsg, and
SIRRpgr, respectively, whose performance is listed in Table 5. We
can observe that other saliency models are effective too, but they
may suffer from some degree of performance drop, which is not
surprising since some settings of SIRR are optimized for the image
signature model. The performance of using other saliency mod-
els can be improved through fine tuning, for example, using other
similarity functions [8]. One advantage of using the image signa-
ture model is that the reference data is much less, since it uses
a binary image descriptor, while other models generate gray scale
saliency maps.

3.4.2. Influence of the similarity function

c e . . 2 2 2srS,
We test three similarity functions, ie., 2hrkd rd =d

uE+p3’ of+oi’ si4sy’
where ur, g4, 0, 04 and o4 are the local mean, variance and co-
variance of the reference and distorted images’ saliency maps s
and sy, respectively. The corresponding RR measures are denoted
as SIRR,,, SIRRy, and SIRRs, respectively, whose performance is also
listed in Table 5. We can observe that the performance is very
close, which means that the form of the similarity function is not
the key factor of SIRR.
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3.5. Parameter sensitivity

We test the sensitivity of SIRR with respect to four parameters—
k1, ky, T1, T2, which are introduced during quality refining. Since
the quality refining is introduced specifically for distortions such as
mean shift and contrast change, we only test parameter sensitivity
on four databases including such distortions, i.e., TID2008, CSIQ,
CID2013, and SIQAD. When varying one parameter, other parame-
ters are fixed at the default values. The parameter range and step
can be found in Table 6, from which we can observe that the SRCC
performance remains stable within a significantly wide range.

3.6. Computational cost

Computational cost is also one important aspect of an algo-
rithm. We test the computational cost of all compared methods
on LIVE database. Table 4 lists the average running time for each
image. Here the running time includes all feature extraction and
comparison procedures at both the sender and receiver sides. All
algorithms are tested on MATLAB R2013a platform which is oper-
ated on a computer with Intel 15-3470 CPU @3.20GHz and 4 GB
RAM. The proposed SIRR is the fastest among all compared meth-
ods except PSNR. Compared with state-of-the-art RR methods, SIRR
does not involve too many complicate transform domain processes.
Moreover, the most computationally costly processes are executed
in the down-sampled image whose resolution is only one over
sixty-four of the original resolution. It significantly reduces the
computational cost of SIRR, which makes it possible for real-time
applications.

3.7. Visualization

We select two representative databases, LIVE for NSIs and
SIQAD for SCIs, and illustrate the scatter plots of all compared
methods in Fig. 5. As analyzed, the quality prediction abilities of
SIRR, MSSSIM, GSIM, FTQM, REDLOG are quite close on LIVE, and
they outperform the rest methods. Whereas on SIQAD, SQMS is the
best. SIRR, SSIM, REDLOG and RQMSH are close, and they outper-
form the rest significantly. As illustrated in the scatter plots, SIRR
is quite balanced for different types of distortions. What is more
important is that it is efficient for both NSI and SCI.

To give an intuitive illustration of SIRR, Fig. 6 shows some rela-
tive saliency maps and quality maps. We select two NSIs and two
SCIs degraded by four most common distortions, i.e., Gaussian blur,
white noise, JPEG, JPEG2000. Saliency maps of both the reference
and distorted images, and the quality maps are shown. As illus-
trated, quality degradation can significantly change the detected
saliency, which is the basis of the proposed method.

4. Conclusion

In this paper, we propose a saliency-induced reduced-reference
(SIRR) IQA measure for the two most common but quite different
types of images encountered in realistic multimedia communica-
tion systems, i.e., NSI and SCI. We develop SIRR based on the ob-
servations that quality degradation can significantly affect saliency
detection, and that saliency detection is in fact an operation of
dimension and data reduction. SIRR evaluates quality by measur-
ing the similarity between two images’ saliency maps, which are
described through a binary image descriptor, i.e., image signature.
Reference data is significantly reduced through down-sampling and
the binary image descriptor. We validate SIRR on five large-scale
NSI QA databases and two existing SCI QA databases. Validation
results show that SIRR is comparable to well-performed FR IQA
measures like MSSSIM and GSIM in NSI. What is more important is
that SIRR outperforms most of the state-of-the-art FR and RR IQA

measures in SCI. The reference data rate is relatively low and it is
computationally costless. It is worth noting that SIRR does not in-
volve any image type classification process, but it is still efficient
for both NSI and SCI under the circumstance that there is not any
prior knowledge about the image types.
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